ACTIVITY BASED COST MANAGEMENT

Q.5 Having attended a CIMA course Solution

Overheads absorbed on machine hour basis (a) Machine hour absorption rate = Total overheads / Total machine hours

 $=\frac{10,430+5,520+3,600+2,100+4,620}{(120x4)+(100x3)+(80x2)+(120x3)}$

 $=\frac{26,000}{1,300}=20$ per machine hour

	A	В	С	D
Direct materials	40	50	30	60
Direct labour	28	21	14	21
Production overhead	80	60	40	60
Production cost/unit	148	131	84	141
Output in units	120	100	80	120
Total production cost	17,760	13,100	6,720	16,920

Total costs based on machine hour basis

(b) Overheads absorbed based on ABC

	Overhead	Level of	Level of activity
	costs	activity	
Machine department cost	10,430	1,300	8.02/hour
Set-up costs	5,250	21*	250.00/run
Stores receiving costs	3,600	80 **	45.00/requisition
Inspection/quality costs	2,100	21*	100.00/run
Material handling and despatch	4,620	42	110.00/order

Workings

*No. of production runs	= Output in Units / 20 120+100+80+120
	$=\frac{20}{420}$ - 21
*No. of requisitions raised	$=\frac{1}{20} = 21$ = No. of Products X 20 = 4 x 20 = 80

	А	В	С	D
Direct materials	40.00	50.00	30.00	60.00
Direct labour	28.00	21.00	14.00	21.00
Direct labour	32.09	24.07	16.05	24.07
Set-up costs	12.50	12.50	12.50	12.50
Stores receiving	7.50	9.00	11.25	7.50
Inspection	5.00	5.00	5.00	5.00
Material handling	11.00	11.00	11.00	11.00
Production cost/unit	136.09	132.57	99.80	141.07
Output in units	120	100	80	120
Total production costs	16,331	13,257	7,984	16,928

Total costs based on ABC

(c) Comparison of the two unit costs calculated in (a) and (b) above.

Product A B C D Based on machine hour rate 148.00 131.00 84.00 141.0 ABC method 136.09 132.57 99.80 141.0 Difference 11.91 (1.57) (15.80) (0.07)		Over costed	Under costed	Under costed	Fairly costed
Product A B C D Based on machine hour rate 148.00 131.00 84.00 141.0 ABC method 136.09 132.57 99.80 141.0	Difference	11.91	(1.57)	(15.80)	(0.07)
ProductABCDBased on machine hour rate148.00131.0084.00141.0	ABC method	136.09	132.57	99.80	141.07
Product A B C D Based on 148.00 131.00 84.00 141.0	machine hour rate				
Product A B C D	Based on	148.00	131.00	84.00	141.00
Product A B C D					
	Product	А	В	С	D

Products A and C have the largest differences. It may be observed that Product A is over-costed whereas Product C is under-costed under traditional costing.

This under/ over costing is due to the disproportionate consumption of resources in comparison to No. of Machine Hours. The ABC approach in theory, attributes the cost of resources to each product which uses those resources on a more appropriate basis than the traditional method.

Other things being constant Product A will be Overpriced and Product C will be Underpriced. Mispricing results in adverse implication of profit because when Product is overpriced then quantity sold will be less than optimal and when underpriced the profit margin would be less than the optimal.

The implication is that product A is more profitable than the traditional approach implies, whereas C is less profitable. If selling prices were determined on costs based on the traditional absorption method, the organisation might consider increasing the price of C and reducing that of A.

Q.7	A bank	offers	three	products	viz	deposits
~	,	011010		p100000	•••••	

Solution

(a)	Budget Cost Statement						
Activity	Activity	Activity	No. of	Activity	Deposits	Loans	Credit
	Cost (Rs.)	Driver	Units of	Rate			Cards
	(Budgeted)		Activity	(Rs.)			
			Driver				
			(Budget)				
1.ATM	8,00,000	ATM	2,00,000	4	6,00,000	-	2,00,000
Services		Transaction					
2.Computer	10,00,000	Computer	20,00,000	0.50	7,50,000	1,00,000	1,50,000
Processing		Transaction					
3.Issuing	20,00,000	No. of	5,00,000	4.00	14,00,000	2,00,000	4,00,000
Statements		Statements					
4. Customer	3,60,000	Telephone	7,20,000	0.50	1,80,000	90,000	90,000
Inquiries		Minutes					
Budgeted	41,60,000				29,30,000	3,90,000	8,40,000
Cost							
Units of produc	Units of product as estimated in the budget period						14,000
Budgeted Cost	t per unit of the	product			50	30	60

Working Notes:

(i)	ATM	4,00,000 + 2,00,000 + 2 × 1,00,000	= 8,00,000
(ii)	Computer	5,00,000 (Fixed = 2,50,000) Variable	= 10,00,000
		2,50,000 increase to 3 times = 7,50,000	
(iii)	Issuing Statements	$2,00,000 + 80\% \times 2,00,000 = 2 + 1.6$	= 3,60,000.

Q.8 DEF Bank operated for years under.....

Solution

Calculation showing Rates for each Activity & Cost of each Product

Activity	Cost Driver Rates	Checking	Personal	Gold Visa
		Accounts	Loans	
Providing ATM	₹1,00,000 - 0.50	1,80,000 × 0.50	-	20,000 × 0.50
Service	2,00,000 - 0.00	= 90,000		= 10,000
	per transaction			
Computer	₹1,00,000 - 0.40	20,00,000 × 0.40	2,00,000 × 0.40	3,00,000 × 0.40
Processing	2,00,000	= 8,00,000	= 80,000	= 1,20,000
	per transaction			
Issuing	₹1,00,000 = 1.60	3,00,000 × 1.60	50,000 × 1.60	1,50,000 × 1.60
Statements	2,00,000	= 4,80,000	= 80,000	= 2,40,000
	per statement			
Customer	₹1,00,000	3,50,000 × 0.60	90,000 × 0.6	1,60,000 × 0.60
Services	2,00,000 - 0.00	= 2,10,000	= 54,000	= 96,000
	per telephone			
	minute			
Total Cost		15,80,000	2,14,000	4,66,000
Units c	of Product	30,000	5,000	10,000
Cost	per unit	52.67	42.80	46.60

Q.9 IBM Ltd manufactures

Solution

Statement showing manufacturing cost

		P1		P2
		₹/unit		₹/unit
Direct Material Cost		407.50		292.10
Overhead:				
Material handling	84×1.20	100.80	46×1.20	55.20
Assembly	3.2×40.00	128.00	1.9×40.00	76.00
Management				
Machine insertion	48×0.70	33.60	31×0.70	21.70
Manual insertion	36×2.10	75.60	15×2.10	31.50
Quality testing	1.4x25	35.00	1.1x25	27.50
Present cost		780.50		504.00
Target cost		680		390

		Revised P1		Revised P2
		₹/unit		₹/unit
Direct Material Cost		381.20		263.10
Overhead:				
Material handling	71×1.20	85.20	39×1.20	46.80
Assembly	2.1×40.00	84.00	1.6×40.00	64.00
Management				
Machine insertion	59×0.70	41.30	29×0.70	20.30
Manual insertion	12×2.10	25.20	10×2.10	21.00
Quality testing	1.2x25	30.00	0.9x25	22.50
Present cost		646.90		437.70
Target cost		680		390
		Achieved		Not achieved

	Revised P1			Revised P2
		₹/unit		₹/unit
Total Cost per unit		646.90		437.70
(as Calculated				
above)				
Less:				
Reduction in	(40-28)x2.1	25.20	(40-28)×1.60	19.20
Assembly				
Management Cost				
Revised Present		621.70		418.50
cost				
Target cost		680		390
		Achieved		Still Not
				achieved

Q.10 ABC Electronics makes

Solution

(i) Calculation of cost of product:

	Particular	AB 100	AB 200
1.	Direct Material cost	₹1000	₹800
			[1000-200]
2.	Direct labour cost	₹200	180
			[200-20]
3.	Machining cost	₹200	₹160
			[(1hr-20%)x200]
4.	Tasting cost	₹250	₹200
			[(2hrs-20%)x125]
5.	Rework cost	₹150	₹75
		(15 lakhs/10000 units)	[5% x 10000 units x ₹1500 =
			750000/10000 units]
6.	Ordering cost	₹2	₹1.25
			[50 components x 2 orders – 100
			orders x 125 = 12500/10000
			units]
7.	Engineering cost	₹198	₹198
	Total cost	2000	1614.25

(ii) Effect on operating income:

Particular	AB 100	AB 200
Sales price	3000	2600
(-) cost price	(2000)	(1614.25)
Margin per unit	1000	985.75

Reduction in margin per unit	=	14.25
X no. of units	=	1000 Units Per Month
Reduction in operating income =		₹ 1,42,500 Per Month

Q.11 Life's Good Electronics.....

Solution

Activities	Cost Rs.	Units of Cost Driver	Cost Driver
			Rate
Product Design	20,00,000	8,000 Design Hours	₹250 per design
			hour
Purchasing	2,00,000	4,000 Purchase Orders	₹50 per purchase
			order
Production (excluding deprn)	12,00,000	12,000 Machine Hours	₹100 per
			machine hour
Packing	4,00,000	20,000 cu.m.	₹20 per cu.m.
Distribution	6,00,000	1,20,000 kg	₹5 per kg.

Calculation of ABC Recovery Rates

Computation of OH Cost of New Product

Particulars	Computation	₹ Per Unit
Product Design	(400 Design Hours x ₹ 250 per hour) ÷ 5000	20.00
	units	
Purchasing	(5 Orders x ₹ 50 per Order) ÷ 250 Units	1.00
Production (excluding depn)	(0.75 machine hours x ₹ 100 per hour)	75.00
Depreciation	(₹ 8000 per quarter x 16 quarters) ÷ 5000 units	25.60
Packing	(0.4 cu.m. x ₹ 20)	8.00
Distribution	(3 kg x ₹ 5)	15.00
	Total Cost Per Unit	144.60

PROFITABILITY ANALYSIS

Q.4 RST Limited specialises in the distribution....

Solution

(i)

RST Limited's

Statement of operating income and gross margin percentage

	General Super	Drugstore	Chemist Shops	Total
	Market chains	Chains		
Revenues: (₹)	2,80,41,750	2,38,21,875	1,49,73,750	6,68,37,375
	(330 x ₹84,975)	(825 x ₹28,875)	(2,750x ₹5,445)	
Less: Cost of goods	2,72,25,000	2,26,87,500	1,36,12,500	6,35,25,000
sold: (₹)	(330 x ₹82,500)	(825 x ₹27,500)	(2,750 x ₹4,950)	
Gross margin: (₹)	8,16,750	11,34,375	13,61,250	33,12,375
Less: Other operating				8,27,970
costs: (₹)				
Operating income: (₹)				24,84,405
Gross margin %	2.91%	4.76%	9.09%	4.96%
Operating income %				3.72%

for each of its three distribution channel

(ii) Computation of rate per unit of the cost allocation base for each of the five activity areas for April 2004

		₹
Customer purchase order proce	ssing (₹ 2,20,000÷ 5,500 orders)	40/ order
Line item ordering	(₹ 1,75,560 ÷ 58,520 line items)	3/line item order
Store delivery	(₹ 1,95,250 ÷ 3,905 store deliveries)	50/delivery
Cartons dispatched	(₹ 2,09,000 ÷ 2,09,000 dispatches)	1/ dispatch
Shelf-stocking at customer store	e (₹) (₹ 28,160 ÷ 1,760 hours)	16/hour

(iii) Operating Income Statement of each distribution channel in April-2004 (Using the Activity based Costing information)

	General	Drugstore	Chemist
	Supermarket	Chains	Shops
	Chains		
Gross margin (₹) : (A) (Refer to (i) part of the	8,16,750	11,34,375	13,61,260
answer)			
Operating cost (₹) : (B) (Refer to working note)	1,62,910	1,90,410	4,74,650
Operating income (₹) : (A –B)	6,53,840	9,43,965	8,86,600
Operating income (in %) (Operating	2.33%	3.96%	5.92%
income/Revenue) x 100			

Working note:

Computation of operating cost of each distribution channel:

	General Supermarket	Drugstore Chains	Chemist Shops
	Chains		
	₹	₹	₩
Customer purchase	15,400	39,600	1,65,000
order processing	(₹40 × 385 orders)	(₹40 × 990 orders)	(₹40 × 4125 orders)
Line item ordering	16,170	35,640	1,23,750
	(₹ 3 × 14 × 385 orders)	(₹3 × 12× 990 orders)	(₹3 × 10 × 4125 orders)
Store delivery	16,500	41,250	1,37,500
	(₹ 50 × 330 deliveries)	(₹ 50 × 825	(₹ 50 × 2750 deliveries)
		deliveries)	
Cartons dispatched	99,000	66,000	44,000
	(₹ 1× 300 cartons ×	(₹ 1 × 80 cartons ×	(₹ 1 × 16 cartons ×
	330 deliveries)	825 deliveries)	2,750 deliveries)
Shelf stocking	15,840	7,920	4,400
	(₹ 16 × 330 deliveries	(₹ 16 × 825 deliveries	(₹ 16 × 2,750 deliveries
	× 3 Av. hrs.)	×. 0.6 Av. hrs)	imes 0.1 Av. hrs)
Operating cost	1,62,910	1,90,410	4,74,650

Comments: The activity-based cost information highlights, how the 'Chemist Shops' uses a larger amount of RST Ltd's resources per revenue than do the other two distribution channels. 'Chemist Shops' ranking I under Traditional Method has actually moved to II place under ABC exchanging the ranks with 'Drugstore Chains'.

It may be further observed that 'General Supermarket chains' although has highest sales among three customer categories but has lowest share of operating income. Ratio of operating costs to revenues, across these markets is:

General supermarket chains	0.58%
(₹1,62,910 / ₹2,80,00,750) x 100	
Drug store chains	0.80%
(₹1,90,410 / ₹2,38,21,875) x 100	
Chemist shops	3.17%
(₹4,74,650 / ₹1,49,73,750) x 100	

New Insights available under ABC:

- (i) Classification of total overheads activity-wise
- (ii) Classification of activities under Value added & non value added is now possible and hence enables cost reduction drive.
- (iii) Knowledge of Activity Cost drivers
- (iv) Operating Income margins are now available which will be helpful in decisionmaking.

Aipha Academy

(iv) Challenges faced in assigning total operating cost of ₹8,27,970 :

- Classification of total overhead costs into various activities requires identification of significant activities which in itself is a challenging task
- Choosing an appropriate cost driver for activity area There may exist multiple cost drivers for a Single Activity e.g. Machine Setup activity may be traced on the basis of no. of set-ups or no. of machine hours.
- Developing a reliable data base for the chosen cost driver Company may make the mistake of including abnormal costs or abnormal no. of units of cost driver
- Deciding, how to handle costs that may be common across several activities.
- Choice of the time period to compute cost rates per cost driver.
- Behavioural factors Collection of operational data e.g. units of Cost Driver could be laborious and company may have to face employee resistance.

Q.8 A manufacturing organization....

Solution

Particular	Α	В	С	D
Selling prices	15,000	18,400	21,000	15,400
net of discount	[60,000 x .25]	[80,000 x .23]	[1,00,000 x .21]	[70,000 x .22]
Less: Sales Visit	420	840	1260	630
	[2 x 210]	[4 x 210]	[6 x 210]	[3 x 210]
Order placing	1800	1200	2400	1200
	[30 x 60]	[20 x 60]	[40 x 60]	[20 x 60]
Product	6000	8000	10,000	7000
handling	[60,000 x .10]	[80,000 x .10]	[10,000 x .10]	[70,000 x .10]
Normal delivery	400	900	500	1400
cost	[20 x 10 x 2]	[30 x 15 x 2]	[10 x 25 x 2]	[50 x 14 x 2]
Rushed delivery	-	-	200	400
cost	[1 x 2]		[1 x 200]	[2 x 200]
Profit	6380	7460	6640	4770
Ranking	III		II	IV

Customer Profitability Statement

BREAK-EVEN POINT

Q.3 A company makes 1,500 units.....

Solution

Data / Unit	1 – 500	501 – 1,500
	₹	₹
Sales (1,20,000 / 1,500)	80	80
Direct material (20,000 / 1,000)	20	20
Direct labour (WN#1)	20	26
Variable overheads 15,000 / 1,500	10	10
Contribution	30	24
No. of units	500	
Total contribution	15,000	
Fixed costs	16,800	
Shortfall	1,800	
No. of units required above 500 to recover shortfall	1,800 /	24 = 75
Break even point	(500 + 75)	= 575 units

<u>WN#1</u>

Let X be the Direct Labour per unit upto 500 units

Total Direct Labour 500X + 1,000 (X + 6) = 36,000

1,500X + 6,000 = 36,000

X = 20.

Therefore, up to 500 units the Direct Labour is Rs. 20. After 500 units it is Rs. 26.

Q.6 The parts in an automobile company.....

Solution

Particulars	Option – I	Option – II
	[All units are tested]	[Units are Not tested]
For every batch of 1000	₹12,500	
units, testing cost (fixed)	[12.50/units x 1000 units]	
Rectification cost	₹50/unit	₹100/unit

Indifference point	=	Change in f	ixed cost
		Change in va	riable cost
	=	12,500 100-50	
	=	250 units	or
	=	25%	

Q.9 The budgeted results of A Ltd.....

Solution

Statement of Profitability

Product	Profit / (Loss) (₹)	P / V Ratio (%)	Contribution (₹)
Х	2,50,000	50	1,25,000
Y	4,00,000	40	1,60,000
Z	6,00,000	30	1,80,000
Total	12,50,000		4,65,000
Less: Fixed Overheads			5,02,200
Profit / (Loss)			(37,200)

Additional Total Sales Value maintaining the same Sale – Mix

= ₹37,200 ÷ 0.372*

= ₹1,00,000

* Combined P / V Ratio

	Total Contribution	v 100
=	Total Sales	x 100
	₹4,65,000 × 100	
=	₹12,50,000 × 100	

= 37.2%

Additional Sale Value of each Product to eliminate the loss

Product	Sales Value (₹)
Х	₹20,000 (₹ 1,00,000 * 25/125)
Y	₹32,000 (₹ 1,00,000 * 40/125)
Z	₹48,000 (₹1,00,000 * 60/125)
Total Additional Sales	₹1,00,000

Q.12 Cable Vision Inc. is a leading

(a) Calculation of Contribution per subscriber

Particular	0-10000	10001-20000	20001-30000
Selling Price	20	20	20
Less: Variable cost			
- Variable revenue share to City of Mirada	2	1	1
- monthly change to Interlink cable	8	8	6
- Own VC	2	2	2
Contribution Per Unit	8	9	11

(b) Calculation of Fixed Cost

Particular	0-10000	10001-20000	20001-30000
- fixed commitment charges to City of Mirada	50000	75000	75000
- fixed fee to interlink cable	20000	20000	20000
- own FC	55000	55000	70000
Total FC	125000	150000	165000

Calculation of BEP

Particular	0-10000	10001-20000	20001-30000
FC to be recovered	125000	150000	165000
Less: Contribution earned			
upto previous range			
- 10000 subscribers @ 8	-	80000	80000
- Next 10000 subscribers	-	-	90000
			₹
Unrecovered FC	125000	70000	-5000
Contribution per unit of	8	9	11
respective range			
Additional no. of subscribers	15625	7777.78	-
Total BEP	15625	17777.78 ~	-*
		17778	
Comment	Invalid BEP	Valid BEP	*No BEP exist
	Falls outside	Since falls within	since there is no
	range	range	unrecovered FC

Answer : BEP Subscriber = 17777.78 ~ 17778 subscribers

(c) Calculation of Operating Income:

Particulars	10000	20000	30000
Contribution	80000	170000	280000
	[10000 x 8]	[(10000 x	[(10000 x
		8)+(10000 x 9)]	8)+(10000x9)+(10000x11)]
(-) FC	125000	150000	165000
Profit/loss	(45000)	20000	115000

Comment: It may be observed that below 17778 subscribers we're in loss & above this no we're into profits

Conclusion:	0-1000	-	Loss
	10001 to 17777	-	Loss
	17778	-	BEP (No Profit No Loss)
	17779 to 20000	-	Profit
	20001 to 30000	-	Profit

Q.13 A Pharmaceutical company......

Solution

Shelf life is one year hence opening stock of 15,000 boxes is to be sold first. Contribution on these boxes is 15,000(50 - 20) = ₹ 4,50,000.

In the question production of previous year is same as in the current year. Hence fixed cost for the year Previous Year is ₹ 20 per unit [₹ 14,30,000 / 1.10 = ₹ 13,00,000 for 65,000 units]. Therefore, Fixed cost for the current year is ₹ 22 per unit.

Variable Cost for the current year (₹ 20 + 25% of ₹ 20) = ₹ 25 per Unit

Hence Contribution per unit during current year is ₹ 25 (50 – 25)

Break even volume is the volume to meet the fixed cost i.e. fixed cost equals to contribution. Therefore, remaining fixed cost of \gtrless 9,80,000 (14,30,000 – 4,50,000) to be recovered from production during current year.

Production in current year to reach BEP = 980000 / 25 = 39,200 units

Therefore, BEP for the current year is 54,200 boxes (15000 + 39200)

Particulars	Amount	Particulars	Amount
To Opening Stock	6,00,000	By Sales [75000	37,50,000
[15000 units *		units x 50]	
(20+20)			
To Production Cost			
for the Current Year			
Production(65000			
uinits)			
- VC @ 25	16,25,000	By Closing Stock	2,35,000
		[5000 units x (25 +	
		22)	
- FC	14,30,000		
To Profit	3,30,000		

Calculation of Profit

Q.15 The following are the cost data.....

Solution

1. The Cost Indifference Points computed are as under –

Particulars	A	В	С
Nature	Manual	Semi-automatic	Fully-automatic
Fixed Costs	Rs.15,000	Rs.45.000	Rs.1,25,000
Variable Costs per report	Rs.240	Rs.140	Rs.40

Indifference Point = $\frac{\text{Difference in Fixed Costs}}{\text{Difference in Veriable Cost per Unit}}$ = computed for each set of option

Between A and B =
$$\frac{\text{Rs.45,000} - \text{Rs.15,000}}{\text{Rs.240} - \text{Rs.140}}$$
 = 300 reports.
Between B and C = $\frac{\text{Rs.1.25,000} - \text{Rs.45,000}}{\text{Rs.140} - \text{Rs.40}}$ = 800 reports.
Between C and A = $\frac{\text{Rs.1,25,000} - \text{Rs.15,000}}{\text{Rs.240} - \text{Rs.40}}$ = 550 reports.

Indifference point represents the situation when cost of two options are equal. Below this point, the option with the lower fixed cost is more economical and beyond this point, the option with the lower variable cost per unit (or higher PV ratio) will be cheaper. In the above case, the interpretation of the indifference point and the decisions are as under: (the numbers indicate the number of reports / cases handled)

2. Decision / Interpretation:

Number of Cases / repots	Choice of method	Reason
Less than 300 cases	A (Manual)	Due to Lower Fixed Cost'
Exactly 300 cases	Either A or B	Indifference Point (between
		A and B).
Above 300 but less than 800 cases	B (Semi-automatic)	Next Range of Lower Fixed
Exactly 800 cases		Costs.
	Either B or C	Indifference Point (between
		B and C).
Above 800 cases	C (Fully automatic)	Lower Variable Costs per
		report / case.

 Present Case Load = 600 cases. The is in the range 300 to 800. Hence Method B (semiautomatic) can be used.

• When the Case Load is expected to go up to 850 cases in the near future, the Court should opt for Method C (fully automatic)

Note: Indifference point between A and c (550 cases) is not relevant-for decision. Making since B is profitable in the range 300 to 800 cases. This indifference point will be relevant only if the choice lies between A and C'

Particulars	Α	В	С
Fixed Costs	Rs.15,000	Rs.45,000	Rs.1,25,000
Variable	Rs.240x550 =	Rs.140x550=Rs.77,000	Rs.40x550=Rs.22,000
Costs	Rs.1,32,000		
Total Costs	Rs.1,47,000	Rs.1,12,000	Rs.1,47,000

3. Cost of various options at 550 cases

At this level, B is more profitable than A and C. Hence this indifference point becomes irrelevant in the overall analysis among A, B and C.

Q.16 Mayura Co. operates its plant.....

(when demand for the product is 10,000 units)					
Particulars	Working overtime for	Working second shift for			
	producing 2,000 units	producing 2,000 units			
Variable Cost	24,000	21,000			
Fixed Cost	NIL	6,000			
Total Cost	24,000	27,000			

Solution (i) Comparative Statement of Cost

* 8000 units in fact are produced in the single shift hence irrelevant. Alternatively, we may also add Cost of 8000 units under both the options. In any cost, differential cost will be the same resulting in same decision.

Decision: Resorting to overtime for producing additional 2,000 units and 8,000 units in the single shift will be beneficial to the extent of Rs.3,000 (i.e., Rs. 27,000 — Rs. 24.000)

(ii) Range of output for overtime working and second shift operation:

Let X be the number of units at which their total cost under overtime working and second shift operation equalises. i.e. X units x Rs. 12 + Rs. 30,000 = X units x Rs. 10.50 + Rs. 36,000

Range	Method to be adopted
Above 8,000 units but less than 12,000 units	Overtime working
At 12,000 units	Any one method may be adopted
12,001 to 16,000 units	Second shift working

(iii) Computation of Prediction Error:

Cost Statement of producing 11,000 units

Particular	Options			
	Working overtime for	Working second shift for		
	producing 3000 additional	producing 3,000 additional		
	units Rs.	units Rs.		
Cost of Producing 8,000 units in first shift (8,000 units x Rs. 10 + Rs. 30,000)	1,10,000	1,10,000		
Additional cost of producing	36,000	37,500		
3,000 units	(3,000 units x Rs. 12)	(3,000 units x Rs. 10.50 +		
		Rs. 6,000)		
Total Cost	1,46,000	1,47,500		

Prediction error: A comparison of total cost of producing 11,000 units under overtime working and second shift working clearly shows a difference of Rs. 1,500 (Rs 1,47,500 — Rs. 1,46,000). The difference of Rs. 1,500 is due to prediction error.

DECISION MAKING UNIT I: RELEVANT COSTING

Q.14 S Ltd. Engaged in manufacturing activities.....

Solution

Statement Showing Minimum price to be charged based on Relevant Cost

Particulars	Relevancy & Reason	₹			
Material M	Slow moving material. Realizable value is relevant as	80.00			
	opportunity cost				
Labour Cost	The workers are permanent employees. Assume no	Nil			
	retrenchment policies exist. Committed Cost are not relevant				
Out of Pocket	Specially Incurred. Hence relevant.				
Expenses					
Allocated	Allocation is not specifically incurred. Hence irrelevant				
Overhead					
	Minimum Price to be charged	110.00			

Q.19 Precision Toolings Ltd (PTL) entered

Solution

Statement of Relevant Costs for HML Contract

Particulars	Relevancy & Reason	Rs.
Original Selling Price	Rs.27,000 – relates to original conditions – Irrelevant	Nil
	begin historical in nature	
Non-refundable	Rs.2,500 – relates to original conditions – Irrelevant	Nil
Deposit	being historical in nature	
Estimated Costs of	Relates to original conditions – Irrelevant being historical	Nil
the Machine Tool	in nature	
Costs incurred upto	Historical and Irrelevant	Nil
date of insolvency		
Realisation from	Foregone if HML contract is obtained – hence	5,550
Scrap	opportunity	
	Cost is relevant = 1,900 + 1,600 - 200 + 2,250	
Additional Material	Already in Stock – Regularly used – Hence,	3,900
Costs	Replacement Cost of materials is relevant	
Labour Costs	Variable and Relevant	1,300
Variable Overheads	To be incurred – Out – of – pocket costs – relevant	900
Fixed Overheads	Presumed as additional and hence relevant	1,100
	Min. Price = Total Relevant Costs for the Contract	12,750

Q.21 ABC Ltd. has just completed production....

Solution

	Particular	Relevancy & Reason	Computation	Amount
1.	Material	Relevant cost is benefit in		₹1900
		value from another		
		product		
2.	Direct wages			
	 Department L 	Relevant cost is labour	[3men x 4weeks x	3150
		cost + opportunity loss of	₹75] + [900 x	
		contribution being labour	2.5/₹10 labour]	
		is key factor		
	 Department M 	Relevant cost is nil since		
		labour are idle		
3.	Variable OH	Relevant cost since	900 x 20%	₹180
		additional in nature		
4.	Fixed OH	Mere absorption is		
		irrelevant cost		
5.	Opportunity loss			
(i)	Opportunity from sale of	Relevant cost being	[1500+(1000-90)-	2110
	basic material	inflow avoided	300]	
(ii)	Design & specification	Relevant cost being		2750
		inflow avoided		
6.	Supervisor	Relevant cost being		450
		additional in nature		
7.	Non-refundable deposit	Irrelevant being his		
		historical cost		
		Total relevant cost		₹8540

Calculation of Minimum Selling Price

Minimum price is relevant cost i.e. ₹8540

Q.23 Assembly Elections are round

Solution

	Particular	Amount	
1.	Material		
	- Paper	Relevant cost is current resale price being material not in regular use	₹25,000
	- Inks	Relevant cost is purchase cost being amount to be agent whole of the cost is incurring for special order those by also charging the same	30,000
2.	Labour		
	- Skilled	Relevant cost being incremental in nature	6250 + 5000 [(250 hrs x 50%) x(₹40 per hour + 25%)] + [125 hrs x ₹40]
	- Unskilled	Irrelevant cost since additional amount is not incoming due to this order benefit to employees are given in non-monetary from i.e. time off for time off they are paid which would also be paid (in also once of order) as idle hrs.	Nil
3.	Variable overheads	Relevant cost being additional in nature	14,000
4.	Depreciation	Irrelevant being mere apportionment of historical cost	-
5.	Opportunity loss (rent)	Relevant cost being opportunity loss of contribution	6000 [200 hrs x ₹30/hrs]
6.	Fixed Production Cost	Irrelevant being mere apportionment of overheads	-
7.	Estimating department cost	Irrelevant being past cost	-
		Total relevant cost	86,250

Calculation of Minimum selling price

Minimum price that company would accept for the order is ₹86,250

Q.26 Johnson trades as a chandler.....

Solution:

1. Computation of Relevant Cost

	Particulars	Relevancy & Reason	Computation	Amount
1.	Cost of	Relevant cost being additional in	-	2000
	employee	nature		
2.	Salary	Relevant cost being invariantly in	$\left(\frac{11000}{2} \times 100\right) +$	26000
		nature	$\begin{pmatrix} 110 \end{pmatrix}$	
			$\left(\frac{8800 \times 2 \times 100}{2}\right)$	
3	Maintonanco	Polovant rovonue boing outflow		(1500)
5.	& nainting	avoided Among 2 quotations in no	[2000-1000]	(1500)
	work	order case, rationally one will choose		
	Work	for lowest one.		
4.	Machine	Relevant cost is fall current resale	6000-3000	3000
	cost	price since Machine is not in regular		
		use		
5.	Material			
	- A	Relevant cost is current purchase	1000x3	3000
		price being material is in regular use.		
	- B	Relevant cost is current purchase	1000x0.90	900
		price being material is in regular use.		
	- C	Relevant cost is current purchase	100x6	600
		price being amount to be spent.		
	- D	Relevant cost for units in stock in	(100x3) + (100x2)	500
		current resale price for unit to be		
		purchased is current purchase price	5000 0 00	1000
	- E	Relevant cost is current purchase	5000x0.20	1000
		price being material in regular use	(1000-21) - (2000-22)	5000
	- F	Relevant cost is current resale price	(1000x1)+(2000x2)	5000
		for upits in stock & surrent purchase		
		price for units to be purchased		
6	Direct	Relevant cost being additional in	_	6500
0.	expense	nature	_	0000
7	Opportunity	Relevant cost being inflow avoided	15,000-	3000
	loss	from another opportunity	(10.000+2000)	0000
	-		Total relevant cost	50,000

The price at which Johnson should be willing to take on the contract in order to break even is 50,000.

2. Other factors have already discussed in the class

UNIT II: KEY FACTOR

Q3. An Engineering company is engaged....

Solution:	Statement showing	ontimal	product	mix &	maximum	contribution	W/o	training.
Solution.	Statement Showing	opumar	ρισάμει	$m \alpha$	maximum	CONTINUATION	VV/U I	uannny.

Particulars	Welding departme	ent	Pressir	Pressing department	
	W1	W2	P1	P2	
Selling price unit	48	50	77	69	
Less: VC pu					
- Material	(18)	(22)	(32)	(44)	
- labour	(16)	(16)	(20)	(8)	
- VOH	(2)	(2)	(3)	(3)	
CPU	12	10	22	14	
No. of labour hrs.	4	4	5	2	
Contribution per hrs	3	2.5	4.4	7	
Ranking	Ι	II	II	I	
Allocation of hrs					
Minimum demand	8000	10,000	9000	4400	
Freely allocation hrs	2000			2600	
	[20000-8000-10000]			[16000-9000-	
				4400]	
No. of units	2500	2500	1800	3500	
	[10000/4]	[10000/4]	[9000/5]	[7000/2]	
CPU	12	10	22	14	
Contribution	30000	25000	39600	44000	
Total Contribution	143600				
(-) Fixed cost	(50000)				
Total Profit	93600				

After training combined hrs availability = 36000 hrs.

Freely allocable hrs. would be 4600 hrs. which will be allocated to product P2, since it ranks I among all 4 products. Even without training 2600 hrs. were still allocated to product P2 the difference would be only be to the extent of incremental 2000 hrs.

Evalution of decision to train

	(5000)
(-) Additional FC	(5000)
Incremental contribution [(₹7/hr - ₹3/hr) x 2000 hr]	8000

Incremental Benefit

Company should train the workers since it results in net benefit of ₹3000 in addition to financial considerations Company should also take into account following factors:

- Impact on efficiency of worker as the new workers may not be equally efficient (i) immediately after training.
- (ii) Impact on product quality as the newly trained workers will still be inexperienced.

Q.7 ZED Ltd. manufactures two products P and Q

Solution

Working Notes :

1.

Computation of total labour hours available

Departments	No. of workmen	Days	Hrs./day	Total hours
(a)	(b)	(c)	(d)	$(e) = (b) \times (c) \times (d)$
A	30	300	8	72,000
В	16	300	8	38,400
С	18	300	8	43,200
D	24	300	8	57,600

2. Computation of hours required per unit of each product

Departments	Product P				Product (2
	Wages (₹)	Wages/hr. (₹)	Hrs.	Wages (₹)	Wage/hr. (₹)	Hrs
	(a)	(b)	(c) = (a)/(b)	(d)	(e)	(f) = (d)/(e)
A	36	6	6	54	6	9
В	18	6	3	36	6	6
С	54	6	9			
D				72	6	12

3. Statement showing maximum output permissible

Departments	Hours available	Product P		Produ	uct Q
		Hrs. required/ Unit	Maximum output in Units	Hrs. required/ Unit	Maximum output in Units
	(a)	(b)	(c) = (a)/(b)	(d)	(e) = (a)/(d)
A	72,000	6	12,000	9	8,000
В	38,400	3	12,800	6	6,400
С	43,200	9	4,800*		
D	57,600			12	4,800*

* This shows that either 4,800 units of product P or Q can be obtained by utilising the available hours in the four departments.

Checking for the existence of Key Factor based on the Maximum possible production of 4800 units of Prod P and Prod Q as calculated above

Department	Availability	Hours Required to produce		Total Hours	Whether
		Product P	Product Q	Requirement	Key
					Factor?
Deptt A	72,000		43,200	72,000	No
		28,800	[4800 * 9]		
		[4800 Units * 6			
		hrs per unit]			
Deptt B	38,400	14,400	28,800	43,200	Yes
		[4800 * 3]	[4800 * 6]		

Л	
4	•

Statement showing Optimal Product Mix

	Product P (₹)	Product Q (₹)
Selling price p.u. (A)	<u>215</u>	<u>320</u>
Total raw material cost p.u.		
(₹ 22 + ₹ 8)	30	
(₹ 28 + ₹ 32)		60
Total wages per unit		
(₹ 36 + ₹ 18 + ₹ 54)	108	
(₹ 54 + ₹ 36 + ₹ 72)		162
Variable overheads p.u.	23	17
Total variable cost p.u. (B)	161	239
Contribution p.u. [(A) – (B)]	54	81
Labour hours p.u. in Deptt B (being Key Factor)	3	6
Contribution per labour hour	18	13.5
Rankings	I	II
Allocation of Hrs in Deptt B	14,400	24,000
	[4800 * 3]	[B/f]
No. of Units i.e. Optimal Product Mix	4800 Units	4000 Units
Total Contribution	2,59,200	3,24,000
	583	200
Less: Fixed Costs	144	000
	439	200

(b)	Statement of most profitable product if only
	one product is to be manufactured

Products	Р	Q
Contribution per unit (₹) : A	54.00	81
Maximum possible output (in units) : (B)	4,800	4,800
Total Contribution : (A) \times (B)	2,59,200	3,88,800

Product Q is to be preferred. Max Profit in that case = ₹ 3,88,800 - ₹ 1,44,000 = ₹ 2,44,800

Statement of most profitable product if only one product is to be manufactured and licence to import the raw material is only for materials worth ₹ 1.80.000

Products	Р	Q
Raw material required p.u. (₹)	30	60
Permissible output in units out of imported	6,000	3,000
material of ₹ 1,80,000		
Maximum output possible in the available	4,800	4,800
hours		
Output possible keeping in view the	4,800	3,000
availability of imported material and labour		
hours (Units)		
Contribution per unit (₹)	54	81
Total Contribution (₹)	2,59,200	2,43,000
	(4,800 units × ₹ 54)	(3,000 units × ₹ 81)

Product P is to be preferred (i.e. answer differs) because of import licence restriction, which is only available for purchasing material worth only ₹ 1,80,000. Max. Profit if Product P is produced = ₹ 259200 - ₹ 144000 = ₹ 115200

Q.11 The budgeted data relating to two products.....

Solution

Let x and y be the number of units of product A & B respectively. the objective function is to maximize profit, where profit = total contribution - fixed costs.

Contribution per unit of the products = selling price - variable Mfg costs - variable selling commission

- For product A: Rs.300 Rs.160 Rs.60 = Rs.80
- For product B: Rs.200 Rs.60- Rs.40 = Rs.100

Hence total contribution = 80x + 100y. also, total fixed costs = 14000+20000= Rs.34000

Aipha Academy

Hence, Objective function is:-

Maximise Z = 80x + 100y - 34,000

4 400 Subject t

t to:	2x + 4y <u><</u> 1,400	(department p time availability)equation 1
	5x + 4y <u><</u> 2000	(department Q time availability)equation 2
	X, y <u><</u> 400	(maximum sale quantity)equation 3
	X, y <u>≥</u> 0	(non –negativity assumption)

Co-ordinate value of z = 80x + 100y - 34,000

(0, 0)

-34,000

(0, 350)1000

(200, 250) 7,000 (maximum)

(400, 0)-2,000

From equation 1, we have 2x +4y=1400. When x = 0, y = 300, Also, x = 700 when y = 0

From equation 2, We have

When x = 0, y = 500,

Also, x = 400 when y=0

Eqn.3 represents two straight lines x = 400 & y =400

After drawing the graph given, the co-ordinates of

Feasible region are identified for computation of z.

Decision: The company should produce 200 and 250 units of A and B respectively to maximize its profit at Rs.7000 per month.

Q.18 The Management accountant of Atul Enterprises....

Solution

Let the no. of units of Product A,B,C,D & E to be produced be denoted by Variables X_1 , X_2 , X_3 , X_4 & X_5 respectively

Maximise Contribution Z = $15 X_1 + 12 X_2 + 16 X_3 + 12 X_4 + 7 X_5$

Subject to,

 $\begin{array}{l} X_{1} \leq 1,500 \\ X_{2} \leq 1,200 \\ X_{3} \leq 900 \\ X_{4} \leq 600 \\ X_{5} \leq 600 \\ X_{1} + X_{2} + 3 X_{3} + 4 X_{4} + 5 X_{5} \leq 5,800 \mbox{ (Maximum Demand Constraint)} \\ X_{1} + X_{2} + 3 X_{3} + 4 X_{4} + 5 X_{5} \leq 5,800 \mbox{ (Max Special Component Availability Constraint)} \\ 12 X_{1} + 10.67 X_{2} + 4 X_{3} + 2.67 X_{4} + 2.67 X_{5} \leq 20,000 \mbox{ (Max Labour Hours Constraint)} \\ 15 X_{1} + 14 X_{2} + 16 X_{3} + 15 X_{4} + 16 X_{5} \leq 30,000 \mbox{ (Max Material Cost Constraint)} \\ X_{1}, X_{2}, X_{3}, X_{4}, X_{5} \geq 0 \mbox{ (Non-Negativity Assumption)} \end{array}$

Q.36 A company manufactures two products. Each product passes...

Solution:

(a) Since it is a case of 2 products *plus* multiple key factor situation we'll solve it using graphical method

	Х	Y
SP	90	80
Less: VC		
- Material	10	10
	[2kg x ₹5]	[2kg x ₹5]
- Machine cost		
Deptt A	20	12
	[0.5 hrs x ₹40ph]	[0.3 hrs x ₹40 ph]
Deptt B	24	27
	[0.4 hrs x ₹60 ph]	[0.45 hrs x ₹60 ph]
	36	31

Calculation of Contribution pu

<u>Objective function: -</u> Maximize Z = 36X + 31Y

Constraints: -

 $\begin{array}{l} X \leq 7400 \\ Y \leq 10000 \mbox{ (Max. demand constraint)} \\ 0.5X + 0.3Y \leq 3400 \mbox{ (Depth A hrs Constraint)} \\ 0.4X + 0.45Y \leq 3640 \mbox{ (Depth B hrs Constraint)} \\ 2X + 2Y \leq 17000 \mbox{ (Direct material availability constraint)} \\ X, Y \geq 0 \mbox{ (NNA)} \end{array}$

Find coordinates

Constraints	When	When	Coordinates
	X = 0	Y = 0	
X = 7400			Straight line at X =
			7400
Y = 10000			Straight line at Y =
			10000
0.5X+0.3Y=3400	11333.33	6800	(0, 11333.33) (6800, 0)
0.4X+0.45Y=3640	8088.89	9100	(0, 8088.89) (9100, 0)
2X + 2Y = 17000	8500	8500	(0, 8500) (8500, 0)

Plot on graph

Finding values of x, y at corner points

At A = 0,0

At B = 0,8088.89

<u>At C</u>

1

2x +2y = 17000 equation no .1 0.4x +0.45y = 3640 equation no.2

Multiplying Equation No .2 by 5 & subtracting equations from each other, we get

$$2x + 2y = 17000$$

$$2x + 2.25y = 18200$$

$$- 0.25y = -1200$$

$$Y = 4800$$

Also,

2x + 2 x 4800 = 17000 X = 3700 At C = 3700, 4800

<u>At D</u>

2x + 2y = 17000 equation no.1 0.5x + 0.3y = 3400 equation no.2 Multiplying equation no.2 by 4 & subtracting equation from each other we get

,		
2	+ 2y	= 17000
þx	+ 1.2y	= 13600
/	-	-
	- 0.8y	= 3400
	Y = 4250	

Also,

$$2x + 2y = 17000$$
$$2x + 2 \times 4250 = 17000$$
$$X = 4250$$
At D = 4250, 4250
At E = 6800, 0

Evaluation in the Objective Function

	Corner Points	Objective function
	(x, y)	Max Z = 36x + 31y
А	(0, 0)	0
В	(0, 8088.89)	250750
С	(3700, 4800)	282000
D	(4250, 4250)	284750
F	(6800, 0)	244800

Decision: Company should produce Prod X = 4250 units, Prod Y = 4250 units to earn Max Contribution of Rs. 284750.

Particulars	If only product X is produced	If only product Y is produced
Possible production based on		
Availability of:-		
Raw material	8500	8500
	[1700kg / 2kg]	[1700/2]
Machine - Deptt A	6800	11333.33
	[3400/0.5]	[3400/0.3]
Machine - Deptt B	9100	8088.89
	[3640/0.4]	[3640/0.45]
Max. demand	7400	10000
Max. possible production	6800	8088.89
(least of above calculation)	[see note below]	[see note below]
Contribution per unit	36	31
Total contribution	244800	250750

(b) Evaluation of both the alternatives

Note: 6800 units & 8088.89 units could also be found from graph be being coordinates at the most binding constraint on X axis & Y axis of the graph respectively.

Decision: If only one of the product could be produced then Company should produce Product Y since it results in Max Total Contribution of ₹250750.

UNIT III: MAKE OR BUY

Q.14 GG Ltd. manufactures and sells.....

Solution

1. Present demand of components (in batches) from 10,800 (maximum) available machine hours and projected estimates of components demand (in batches) in the next year.

Maximum available machine hours 10,800 Machine hours needed to manufacture components. A, B and C (Per batch of ten numbers) of water purifier Total

Components

A	20	Machine hours
В	28	Machine hours
С	24	Machine

72 hours

Present demand (in batches) of components A, B and C (10,800 hours/72 hours) 150

Projected estimate of demand of components A, B and C (add 50% increase) 225 in the next year

Present and future fixed costs: 2.

Present fixed cost of 150 batches @ Rs.200/- per batch	30,000
Add: Increase in fixed cost to meet 50% increase in demand	<u>10,000</u>
Total future fixed cost for 225 batches	<u>40,000</u>

3. Expected purchase cost of components

View point	Probability	Component			
		А	В	С	
		Expected price	Expected Price	Expected Price	
		Rs.	Rs.	Rs.	
Pessimistic	0.25	30	50	40	
		(Rs.120×0.25)	(Rs.200×0.25)	(Rs.160×0.25)	
Most likely	0.50	55	65	70	
		(Rs.110×0.50)	(Rs.130×0.50)	(Rs.140×0.50)	
Optimistic	0.25	20	35	30	
		(Rs.80×0.25)	(Rs.140×0.25)	(Rs.120×0.25)	
Total		<u>105</u>	<u>150</u>	<u>140</u>	

Present contribution (per batch) 4.

	Rs.	Rs.
Selling price (per batch)		800
Less: Variable production cost	320	
Less: Variable assembly cost	50	370
Contribution (per batch)		430
Total Present contribution on 150 batches		64,500

Aipha Academy

(i) Maximum number of batches that could be produced in 10,800 machine hours each of the three alternatives namely buying A or B or C is considered respectively.

(a)	Buy component	A (from outsi	de)	No machine hour required
. ,	Make component	В	28	Machine hours required
	Make component	С	<u>24</u>	Machine hours required
		Total	<u>52</u>	
	Number of batches t	hat could be pr	oduced	internally 207.69 batches
	(10,800 hours/52 ho	urs)		
(b)	Buy component	B (from outsi	de)	No machine hour required
	Make component	А	20	Machine hours required
	Make component	С	<u>24</u>	Machine hours required
		Total	<u>44</u>	
	Number of batches t	hat could be pr	oduced	internally 245.45 batches
(10,800 hours/744 hours)				

But in view of projected (expected) market demand of 225 batches, production would be restricted to 225 batches only.

(c)	Buy component	C (from o	utside)	No machine hours required	
	Make component	А	20	Machine hours required	
	Make component	В	28	Machine hours required	
		Total	48		

Number of batches that could be produced internally 225 batches (10,800 machine hours 748 hours)

(ii) Statement of financial implication when purchases of component A, B and C are made from outside

(in view of the fact that production capacity will be limited to 50% increase)

Component bought	А	В	С
	Rs.	Rs.	Rs.
Total variable cost per batch	64	108	116
(I)			
Expected purchase cost (II)	105	150	140
Increase in variable cost per	41	42	24
batch (III) = (II – I)			
Present contribution per	430	430	430
batch (IV)			
Revised contribution per	389	388	406
batch (V) = $(IV - III)$			
Total revised contribution	80,791	87,300	91,330
	(207.69 batches ×	(225 batches	(225 batches
	Rs.389)	× Rs.388)	× Rs.406)

Advise: Purchase component C from outside as it gives maximum contribution on manufacturing A and B internally.

(iii) Profit Statement

(When C is bought from outside and A, B were manufactured internally and extra production is made and sold)

	Per Batch Rs.	Total (for 225
		batches)
		Rs.
Sales revenue: (I)	800.00	1,80,000
		(225 batches
		× Rs.800)
Less: Variable costs (Rs. (Per batch) : (II)		
Production cost of A Rs.64		
Production cost of B Rs.108		
Production cost of D Rs.24		
Production cost of E Rs.8		
Production cost of C Rs.140		
Rs.344		
Assembly cost Rs.50	394.00	88.650
		(225 batches
		× Rs.394)
Contribution: (III) – (II)	406.00	91,350
Less: Fixed costs	177.78	40,000
(Rs.40,000 / 225 batches)		
Profit	228.22	51.350

Q.23 A company manufacturing a highly successful....

Solution

Total Cost per tube including EMO:

	9	
Direct Material	(108/24)	=₹4.50
Direct Wages	(72/24)	=₹3.00
Variable Overheads	[54/24 – 450000/300000]	=₹0.75

Particulars	Total Cost (₹)	Tube Cost (₹)	Product Cost (₹)
Material	4.5	0.9	3.60
Wages	3.0	0.3	2.70
Variable Overhead	0.75	0.075	0.675
	8.25	1.275	6.975

Statement showing computation of manufacturing cost of 300000 tubes

Cost of making (300000 x 1.275) = ₹ 3,82,500

Cost of buying (300000 x 1.35) = ₹ 4,05,000

It is better to make the tubes at 300000 level of output.

Computation of Cost for additional tubes:

Particulars	50000	150000
Cost of Making (₹)	93750	221750
	[(50000 x 1.275) + 30000]	[(150000 x 1.275) + 30000]
Cost of Buying (₹)	67500	202500
	(50000 x 1.35)	(150000 x 1.35)

From the above, it is better to buy at these levels.

(ii) The level at which it is beneficial to make the tubes over and above 300000 units. [Indifference Point] x (Fixed Cost/Diff. in Variable Cost per unit) = 30,000 x (1.35-1.275) = 4,00,000 units.

The Company will be justified to install the additional Equipment for the manufacture of Empty tubes at a sales volume of 700000 units.

Statement showing computation of Profit at three levels of output:

	Particulars	300000	350000	450000
Ι.	Sales [240/24] (₹)	300000	3500000	4500000
II.	Cost (₹)	2092500	2441250	3138750
		(300000x6.975)	(350000x6.975)	(450000x6.975)
III.	Tube Cost (₹)	382500	472500	607500
		(300000x1.275)	(350000x1.35)	(450000x1.35)
IV.	Fixed cost (₹)	450000	450000	450000
V.	Total Cost (₹)	2925000	3363750	4196250
VI.	Profit (I – V) (₹)	75000	136250	303750

Aipha Academy

UNIT IV: KEEP OR DROP

Q.3 A Ltd. produces and markets a range of consumer.....

Solution

Statement showing value of total work undertaken by X Ltd. at customer's price

	(Rs. '000)
Material cost (for appliances covered under agreement)	825
Material cost (for appliances not covered under agreement)	275
Labour cost (for appliances covered under agreement)	1,000
Labour cost (for appliances not covered under agreement)	240
Total receipts	2,340

Break up of receipts:

Big appliances	60%	1,404
Small appliances	40%	936

Profitability Statement

			(Rs. '000)
	Option 1	Option 2	Option 3
Income:			
Big appliances	129.6	1,404	1,404
	(60% x Rs,216)		
Small appliances	936	86.4	936
		(40% × Rs.216)	
Total receipts: (A)	1,065.6	1,490.4	2,340
Costs:			
Material	320	480	800
	40% × (825 + 275)	60% × (825 + 275)	(825 + 275)
	137.5%	137.5%	137.5%
Heat, rent, light etc.,	125	50	150
Management costs	108	83	150
Service staff costs	230	440	750
Transport costs	25	220	230
Total costs : (B)	808	1,273	2,080
Profit : [(A) – ((B)]	257.6	217.4	260

Recommendation:

Option 3 is most profitable one.

Working Notes:

- Material and labour cost (for appliances under after sales agreement) : 1. Rs. (i) Cost of material per unit charged to customer's by X Ltd. (Rs.100 + 10% (Rs.100+ 25% × Rs.110) 137.50 Cost of material charged to customer's by X Ltd. $\left(\frac{\text{Rs.60,000}}{\text{Rs.10}} \text{ x Rs. 137.50}\right)$ 8,25,000 Cost of labour charged to customers by X Ltd. (ii) $\left(\frac{\text{Rs.1,00,000}}{\text{Rs.10}}\right) \times 100$ 10,00,000 2. Material and Labour cost (for appliances not covered under sales agreement) :
 - (i) Cost of material charged to customers by X Ltd. $\left(\frac{\text{Rs.20,000}}{\text{Rs.10}} \times \text{Rs. 137.50}\right)$ 2,75,000
 - (ii) Cost of labourer charged to customers by X Ltd. $\left(\frac{\text{Rs.36,000}}{\text{Rs.15}}\right) \times 100$ 2,40,000

Aipha Academy

UNIT V: BUSINESS DECISIONS

Q.3 Times of India is considering launching.....

Solution

1. Analysis of Semi-Variable Costs

Method	Α	В
Semi – Variable Costs for 3,50,000 Copies	5,50,000	4,75,000
Semi – Variable Costs for 4,50,000 Copies	6,50,000	5,25,000
Semi – Variable Costs for 6,50,000 Copies	8,50,000	6,25,000
Variable Cost per Copy	Re. 1	Re. 0.50
Therefore, Variable Costs for 350000 Copies	3,50,000	1,75,000
Therefore, Fixed Costs	2,00,000	3,00,000
Specific Fixed Costs (as given)	8,00,000	<u>12,00,000</u>
Therefore, Total Fixed Costs	<u>10,00,000</u>	<u>15,00,000</u>
Total Variable Costs	5.50 + 1.00 = 6.50	5.00 + 0.50 = 5.50

Present Profit: 2,20,000 x (Rs.8.50 – Rs.3.50) – Rs. 8,00,000 = Rs.3,00,000

Situation	(b	(b) (a) (c)		(a))
Magazine	New	Existing	New	Existing	New	Existing
Quantity	4,00,000	1,80,000	5,00,000	1,70,000	6,00,000	1,60,000
Selling Price per	10.00	8.50	10.00	8.50	10.00	8.50
Сору						
Variable Cost	<u>6.50</u>	<u>3.50</u>	<u>6.50</u>	<u>3.50</u>	<u>6.50</u>	<u>3.50</u>
per Copy						
Contribution	<u>3.50</u>	<u>5.00</u>	<u>3.50</u>	<u>5.00</u>	<u>3.50</u>	<u>5.00</u>
par Copy						
Total	14,00,000	9,00,000	17,50,000	8,50,000	21,00,000	8,00,000
Contribution						
(Rs.)						
Less: Fixed	10,00,000	8,00,000	10,00,000	8,00,000	10,00,000	8,00,000
Cost						
Profit	4,00,000	1,00,000	7,50,000	50,000	11,00,000	NIL
Total Profit	Rs.5,0	0,000	Rs.8,0	0,000	Rs.11,0	0,000
Additional Profit	Rs.2,0	0,000	Rs.5,0	0,000	Rs.8,00	0,000

2. Statement of Profitability at differing sales volumes If Method A were considered

Situation	(b)		(a)		(c)	
Magazine	New	Existing	New	Existing	New	Existing
Quantity	4,00,000	1,80,000	5,00,000	1,70,000	6,00,000	1,60,000
Selling Price per Copy	10.00	8.50	10.00	8.50	10.00	8.50
Variable Cost per Copy	<u>5.50</u>	<u>3.50</u>	<u>5.50</u>	<u>3.50</u>	<u>5.50</u>	<u>3.50</u>
Contribution per Copy	<u>4.50</u>	<u>5.00</u>	<u>4.50</u>	<u>5.00</u>	<u>4.50</u>	<u>5.00</u>
Total Contribution (Rs.)	18,00,000	9,00,000	22,50,000	8,50,000	27,00,000	8,00,000
Less: Fixed Cost	15,00,000	8,00,000	15,00,000	8,00,000	15,00,000	8,00,000
Profit	3,00,000	1,00,000	7,50,000	50,000	12,00,000	NIL
Total Profit	Rs.4,0	0,000	Rs.8,0	0,000	Rs.12,0	0,000
Additional Profit	Rs.1,0	0,000	Rs.5,0	0,000	Rs.9,0	0,000

If Method B were considered

3. Copies to be sold too recover fixed cost and make no additional profit

Method	Α	В
Fixed Costs to be Recovered	10,00,000	15,00,000
Contribution per Copy of new publication	3.50	4.50
Less: Reduction in Contribution of Existing Publication (5.00 ÷ 10)	0.50	0.50
Net Contribution per Copy	3.00	4.00
Hence, no. of copies to be sold to recover Fixed Cost	3,33,333	3,75,000

Alternatively:

Let the no. of new magazines be "X" copies under Method A and "Y" copies under Method B:

Particular	Method A		Γ	Method B
	New	Existing	New	Existing
Copies	Х	220000 - X/10	Y	220000 – Y/10
Contribution per copy	3.50	5.00	4.50	5.00
Total Contribution	3.50X	1100000 – X/2	4.50Y	1100000 – Y/12
Less: Fixed Cost	18,00,000		2	23,00,000
Profit	3X - 7,00,000		4Y	- 12,00,000
Present Profit	3,00,000			3,00,000
Equation:	3X - 700000 = 3,00,000		4Y - 12,0	00,000 = 3,00,000
On Solving, we have,	X = 3,33,333 Copies		Y = 3,	75,000 Copies

Conclusion:

(2)	Sales Volume	Option	Reason
. ,	< 5,00,000 Copies p.m.	A	Lower Fixed cost
	= 5,00,000 Copies p.m.	A or B	Same Profit i.e. Indifferent Point
	> 5,00,000 Copies p.m.	В	Lower Variable Cost or Higher PV Ratio.

 (3) Minimum Copies too be sold to maintain the same profit are: Method A = 3,33,333 Copies, and Method B = 3,75,000 Copies. If the Company forecasts low demand situation, it should choose Method A

(4) BEP/Shutdown Point of existing Magazine = 8,00,000 ÷ 5 = 1,60,000 Copies
 Present Margin of Safety = 60,000 Copies
 If new magazine i.e. Method A or Method B sells more than 6,00,000 Copies (60000 x 10). It is preferable to close the existing magazine since it will operate below shut down point.

Q.5 The Sales Manager of Sunflag iron & steel.....

Solution

(i) Statement of sales, costs and profit expected from alternative ways of increasing production

	Subcontract	Additional	Additional
		shift	plant
	Rs	Rs	Rs
Additional sales (2,000 tons)	50,00,000	50,00,000	50,00,000
Cost increases:			
Materials		7,50,000	7,50,000
(Rs 30,00,000/8000=Rs 375 per ton)			
Direct wages	41,00,000		
Production variable overhead		1,75,000	1,75,000
(Rs 7,00,000/8,000=Rs 87.5 per ton)			
Production fixed overhead			2,70,000
Distribution variable overhead	50,000	50,000	50,000
(Rs 2,00,000/8,000= Rs 25 per ton)			
Administration overhead	1,00,000	1,00,000	1,00,000
Selling and distribution overhead	2,00,000	2,00,000	2,00,000
	44,50,000	52,75,000	45,45,000
Additional profit/ loss	5,50,000	(2,75,000)	4,55,000
Original budgeted profit	20,00,000	20,00,000	20,00,000

(ii) Revised operating budget based on subcontract:

	Rs' 000	Rs '000
Sales:10,000 tons @Rs 2,500 per ton		2,500
Variable costs		
Materials	300	
Direct wages	1,200	
Subcontract	410	
Production overhead 50% variable	70	
Total production variable cost	1,980	
Distribution – 20% variable	25	2,005
Contribution		495
Fixed costs		
Production	70	
Administration	70	
Selling and distribution	10	240
Profit		255

Q21. Two competing companies ABC Ltd. and XYZ Ltd. produce.....

Solution:

	ABC	XYZ
1. PV Ratio = (Contribution/Sales)	50000/250000	100000/250000
	=20%	=40%
2. Breakeven Sales = (Fixed Cost/C	pu) 25000/20%	75000/40%
	=125000	= 187500

(a) If low demand scenario is expected then Co. ABC Ltd is expected to earn greater profits because :-

- ✓ It has lower FC
- ✓ It has lower BEP

(b) If high demand scenario is expected then Co. XYZ Ltd. is expected to earn greater profits because :-

✓ It has higher PV Ratio – although BEP is higher still after a certain level of sales an additional ₹ of sales revenue will add more to the contribution & hence to the Profit as compared to Co. ABC Ltd.

Aipha Academy

UNIT VII: SELL OR FURTHER PROCESS

Q.1 Inorganic Chemicals purchases...

Solution

1.

(a) Sales value at split off method

Products	Sales in	Selling price	Sales	Joint cost
	tonnes	per tonne	revenue	apportioned*
	(a)	(₹)	(₹)	(₹)
		(b)	(c)=(a) × (b)	
Caustic Soda	2,400	100	2,40,000	1,00,000
Chlorine	1,600	150	2,40,000	1,00,000
			4,80,000	2,00,000

* Apportioned joint cost	$= \frac{\text{Total joint cost}}{\text{Total sale value}} X \text{ Sale revenue of each product}$
	₹2,40,000

Joint cost apportioned to Caustic Soda = $\frac{\sqrt{2,40,000}}{\sqrt{4,80,000}} \times \sqrt{2,00,000} = \sqrt{1,00,000}$

Joint cost apportioned to Chlorine

=^{₹2,40,000}/_{₹4,80,000} x ₹2,00,000 = ₹1,00,000

(b) Physical Measure Method

Products	Sale in	Joint cost (₹)
	(tonnes)	apportioned **
Caustic Soda	2,400	1,20,000
Chlorine	1,600	80,000
	4,000	2,00,000

**Apportioned joint cost = $\frac{\text{Total joint cost}}{\text{Total physical value}}$ x Physical units of each product

Joint cost apportioned to Caustic Soda = $\frac{₹2,00,000}{4,000 \text{ tonnes}} \times 2,400 \text{ tonnes} = ₹1,20,000$

Joint cost apportioned to chlorine = $\frac{₹2,00,000}{4,000 \text{ tonnes}} \times 1,600 \text{ tonnes} = ₹80,000$

(c) Estimated net realisable value method

Producte	Salo	Furthor	Not	Apportioned***
FIUUUCIS	Jaie	i uiuiei	INCL	Apportioned
	Revenue	Processing	realisable	Joint cost
	(₹)	cost (₹)	Value	(₹)
	(a)	(b)	(₹)	
			(c) = (a) - (b)	
Caustic Soda	2,40,000	-	2,40,000	80,000
(2,400 tonnes				
× ₹100)				
Chlorine	4,00,000	40,000	3,60,000	1,20,000
(Using PVC's				
Revenue)				
			6,00,000	2,00,000

**Apportioned joint cost = $\frac{\text{Total joint cost}}{\text{Total net realisable value}}$ x Net realisable value of each Product Apportioned joint cost for Caustic Soda = $\frac{\overline{2},40,000}{\overline{4},0000}$ x $\overline{2},00,000 = \overline{8},000$ Apportioned joint cost for Chlorine = $\frac{\overline{2},40,000}{\overline{4},00000}$ x $\overline{2},0,000 = \overline{1},20,000$

2. Calculation of Gross Margin Percentage

Particulars	Caustic soda	PVC
(i) Sales value at Split off:		
Sales Revenue	240000	400000
Less: Further Processing Cost	-	40000
Less: Joint Cost	100000	100000
Gross Profit	140000	260000
Gross Margin %	58.33%	65%
(ii) Physical Measure:		
Sales revenue	240000	400000
Less: Further processing cost	-	40000
Less: Joint Cost	120000	80000
Gross Profit	120000	280000
Gross Margin %	50%	70%
(iii) Net Realizable Value:		
Sales revenue	240000	400000
Less: Further Processing Cost	-	40000
Less: Joint cost	80000	120000
Gross Profit	16000	240000
Gross Margin %	66.67%	60%

Aipha Academy

 3.
 Incremental revenue from further processing of Chlorine into PVC
 ₹1,60,000

 (1000 tonnes x ₹400 - 1600 tonnes x ₹150)
 £1,60,000

 Less: Incremental cost of further processing of Chlorine into PVC
 ₹ 40,000

 Incremental operating income from further processing
 ₹1,20,000

The operating income of Inorganic Chemicals will be reduced by ₹1,20,000 in August if it sells 1,600 tonnes of Chlorine to Lifetime Swimming Pool Products, instead of further processing of Chlorine into PVC for sale.

Q.3 Pigments Ltd. is a chemical factory.....

Solution

Particulars	Option – I	Option – II
	Process L to M	Sell new product A
	Amount (₹)	Amount (₹)
Sale of Product M	648,000	
Sale of Product A		210000
(Less: Revenue lost on Product L)	400,000	
(Less: Revenue lost on Product J)		35000
Less: Additional Cost	180,000	84000
Incremental Profit	68000	91000
Decision : Option II is better by ₹ 23000		

UNIT VII: SHUT DOWN POINT

Q.1 Crocodile, a company manufacturing.....

Shutdown point

 $= \frac{\text{Avoidable FC-Cost of shutdown}}{\text{Cpu}}$ $= \frac{5,00,000-1,00,000}{100}$

= 4000 units

Company should **continue** the operations since expected activity level (5000 units) > shutdown point (4000 units)

If Cpu changes to ₹ 60 pu

Shutdown point =

 $= \frac{5,00,000-1,00,000}{60}$

= 6667

Company should **Shutdown** the operations since expected activity level (5000 units) < shutdown point (6667 units)

Q.2 Sony Ltd. manufacturing 20,000.....

Evolution of both the Alternatives

Particulars	If Continue	If Shutdown
No. of units	2000 units	-
Sales revenue @ 20,000	4,00,00,000	-
Less: Variable cost @13,000	2,60,00,000	-
Contribution	1,40,00,000	-
Less: Fixed cost	8,00,00,000	3,30,00,000
Less: Additional Shutdown cost	-	1,20,00,000
Profit / (loss)	(6,60,00,000)	(4,50,00,000)

Company should **shutdown** the operations since it results in lower amount of losses.

Shutdown Point

Avoidable FC–cost to shutdown

$$=\frac{4,70,00,000-1,20,00,000}{7000}$$

= 5000 units

=

Alpha Academy

Q.4 Sumukha Ltd. which manufactures the....

Solution

Calculation of Variable Costs, Break Even Sales, Profit and Fixed Cost for the Year 20X2

Sales for the year 20X2	Rs. 6,00,000
Profit Volume Ratio	25%
Contribution = Sales x P/V Ratio	Rs. 1,50,000
Variable Cost = Sales – Contribution	Rs. 4,50,000
Margin of Safety	20%
Margin of Safety = Sales x 20% i.e. Rs. 6,00,000 x $\frac{20}{100}$	Rs. 1,20,000
Break Even Sales = Sales - Margin of safety	Rs. 4,80,000
	(Rs. 6,00,000 – Rs. 1,20,000)
Profit = Margin of Safety x P/V Ratio	Rs. 30,000
	(Rs. 1,20,000 x 25%)
Fixed Cost = Contribution - Profit	Rs. 1,20,000
	(Rs. 1,50,000 - Rs. 30,000)

Computation of Sales, Break Even Sales and Fixed Cost for 20X3

Let the sales for the year 20X3 be X and the Variable Cost for the year is Rs. 4,50,000. same as in the year 20X2

Contribution = x - Rs. 4,50,000P/V Ratio (Given) = 20% 20% of Sales = x - Rs. 4,50,000Or 20% of = x - x - Rs. 4,50,000

Or
$$\frac{20}{100} = \frac{x - \text{Rs.4,50,000}}{x}$$

Or $\frac{20}{100} = \frac{x - \text{Rs.4,50,000}}{x}$

Or 0.80x = Rs.4,50,000

Or
$$x = \text{Rs.4,50,000} \times \frac{100}{80} = \text{Rs.5,62,500}$$

Sales = Rs. 5,62,500

Margin of Safety = 30%

Margin of Safety = Rs. 5,62,500 x $\frac{30}{100}$ = Rs. 1,68,750Break Even Sales= Sales - Margin of Safety
= Rs. 5,62,500 - Rs. 1,68,750 = Rs. 3,93,750Break Even Sales= $\frac{\text{Fixed Cost}}{P/V \text{ Ratio}}$

Or Fixed Cost = P/V Ratio x Break Even Sales

= 20% x Rs. 3,93,750 = Rs. 78,750

COMPARATIVE STATEMENT OF SALES AND PROFIT UNDER MARGINAL (i) COSTING for the years 20X2 and 20X3

20X2 20X3 Rs. Rs. 5,62,500 Sales 6,00,000 Less: Variable Cost 4,50,000 4,50,000 Contribution 1,50,000 1,12,500 Less: Fixed Cost 1,20,000 78,750 Profit 30,000 33,750

Minimum Sales Required (if the company decides to shut-down its unit in 20X3) (ii) = <u>Avoidable Fixed Cost</u> Minimum Sales Required

P/V Ratio

 $=\frac{\text{Rs.78,750}-\text{Rs.60,000}}{2000}$ = Rs. 93,750 20%